Optimization

Tamara Kucherenko

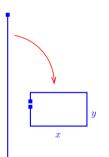
Optimization

An optimization problem consists of finding the "best available" value of some function on a given domain.

Strategy:

- Choose variables. Determine which quantities are relevant by drawing a diagram and assign appropriate variables.
- Find the function and the interval. Restate the problem in terms of finding the maximum or the minimum of a function f on some interval. If f depends on more than one variable, use the given information to rewrite f as a function of just one variable.
- Optimize the function. Use the derivative to find the absolute maximum or minimum of the function. If the interval is closed, use the Closed Interval Method.

A piece of wire of length 8 in is bent into the shape of a rectangle. Which dimensions produce the rectangle of maximum area?



Notation: x-length, y-width, A-area.

<u>Given</u>: perimeter 2x + 2y = 8. <u>Goal</u>: Maximize the area.

Area of the rectangle: $A = x \cdot y$

Rewrite the area as a function of one variable:

$$2x + 2y = 8$$
 \Rightarrow $y = 4 - x$. Thus, $A = x(4 - x) = 4x - x^2$

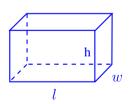
Goal: Maximize $A(x) = 4x - x^2$ for $0 \le x \le 4$.

We use the closed interval method: $A'(x) = 4 - 2x = 0 \Rightarrow x = 2$.

$$A(0) = 4 \cdot 0 - (0)^2 = 0, A(2) = 4 \cdot 2 - (2)^2 = 4, A(4) = 4 \cdot 4 - (4)^2 = 0$$

The rectangle of maximal area is the square of sides x = y = 2.

A rectangular storage container with an open top is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs \$20 per square meter. Material for the sides costs \$9 per square meter. Find the cost of materials for the cheapest such container.



Notation: l-length, w-width, h-hight. V-volume

Given: $V = 10 \text{m}^3$, l = 2w, base cost=\$20 per m², side cost=\$9 per m²

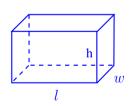
Goal: Minimize the cost

Cost= $20 \cdot (\text{Area of the base}) + 9 \cdot (\text{Area of four sides})$ = $20 \cdot (wl) + 9(2lh + 2wh)$

Rewrite the cost as a function of one variable:

$$l = 2w$$
 and $V = 10 = lwh \implies h = \frac{10}{lw} = \frac{10}{2w^2} = \frac{5}{w^2}$

A rectangular storage container with an open top is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs \$20 per square meter. Material for the sides costs \$9 per square meter. Find the cost of materials for the cheapest such container.



Notation: l-length, w-width, h-hight. V-volume

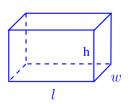
Goal: Minimize the cost

Rewrite the cost function using l=2w and $h=\frac{5}{w^2}$:

$$\begin{aligned} \mathsf{Cost} &= 20 \cdot (wl) + 9(2lh + 2wh) \\ &= 20 \cdot (w \cdot 2w) + 9(2 \cdot 2w \cdot \frac{5}{w^2} + 2w \cdot \frac{5}{w^2}) \\ &= 40w^2 + \frac{270}{v} = C(w) \end{aligned}$$

Minimize C(w) for w > 0.

A rectangular storage container with an open top is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs \$20 per square meter. Material for the sides costs \$9 per square meter. Find the cost of materials for the cheapest such container.



Notation: l-length, w-width, h-hight, V-volume

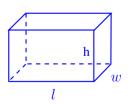
Goal: Minimize
$$C(w) = 40w^2 + \frac{270}{w}$$
 for $w > 0$.

Differentiate:
$$C'(w) = 80w - \frac{270}{w^2} = \frac{80w^3 - 270}{w^2}$$

Critical numbers:
$$80w^3 - 270 = 0 \Rightarrow w^3 = \frac{270}{80} \Rightarrow w = \frac{3}{2}$$

Tamara Kucherenko

A rectangular storage container with an open top is to have a volume of 10 m³. The length of its base is twice the width. Material for the base costs \$20 per square meter. Material for the sides costs \$9 per square meter. Find the cost of materials for the cheapest such container.



Notation: l-length, w-width, h-hight, V-volume

Goal: Minimize
$$C(w) = 40w^2 + \frac{270}{w}$$
 for $w > 0$.

Differentiate:
$$C'(w) = 80w - \frac{270}{w^2} = \frac{80w^3 - 270}{w^2}$$

Critical numbers:
$$80w^3 - 270 = 0 \Rightarrow w^3 = \frac{270}{80} \Rightarrow w = \frac{3}{2}$$

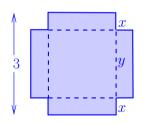
Minimal cost is

$$C(\frac{3}{2}) = 40(\frac{3}{2})^2 + \frac{270}{\frac{3}{2}} = \boxed{\$270}$$

Tamara Kucherenko

Optimization

A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.



Given: 2x + y = 3. Goal: Maximize the volume

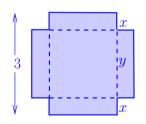
Volume $V = (hight) \cdot (Area of the base) = x \cdot y^2$

Rewrite the volume as a function of one variable: $2x + y = 3 \Rightarrow y = 3 - 2x$. Thus, $V = x(3 - 2x)^2$

Goal: Maximize $V(x) = x(3-2x)^2$ for $0 \le x \le \frac{3}{2}$

x-length of the cut square, y-length of the base

A box with an open top is to be constructed from a square piece of cardboard, 3 ft wide, by cutting out a square from each of the four corners and bending up the sides. Find the largest volume that such a box can have.



x-length of the cut square, y-length of the base

Goal: Maximize
$$V(x) = x(3-2x)^2$$
 for $0 \le x \le \frac{3}{2}$

Use the closed interval method:

$$V'(x) = (3-2x)^2 + 2x(3-2x)(-2) = (3-2x)(3-6x) = 0$$

Critical numbers: $x = \frac{3}{2}$ and $x = \frac{1}{2}$.

Points to check: x = 0, $x = \frac{1}{2}$, $x = \frac{3}{2}$.

$$V(0) = 0, V(\frac{1}{2}) = \frac{1}{2}(3 - 2 \cdot \frac{1}{2})^2 = 2, V(\frac{3}{2}) = 0.$$

The maximal volume is 2 ft^3

THE END